EES4710/ME4300 Modern Control System Course Note
National University of Singapore(Suzhou) Research Institute Prof. Ong Chong Lin Email: mpeongcj@nus.edu.sg Tel: 6516-2217 Editor: Longbin
Chapter 0 – Review of Basic Control System
Open Loop & Close Loop
Parameter Sensitivity
\[S^T_G = \frac{\Delta T}{\Delta G}\]Where T is the transfer function (Combination of controlled system, controller and feedback), and G is the controlled system.
Advantages of close loop control
- decrease effect of input noise
- decrease effect of sensor noise
Laplacian Transformation
\[L[f(t)] = \int_0^\infty f(t)*e^{-st}dt\]Transfer Function
- Input \(r(t): R(s)\)
- Output \(c(t): C(s)\)
- System \(G(s) = \frac{C(s)}{R(s)}\)
Mathematical Modeling
Example1: Mass-Spring-Damper System
\[G(s) = \frac{1}{ms^2+ks+1}\]Example2: RLC Circuit System
\[G(s) = \frac{s}{Ls^2 + Rs + \frac{1}{C}}\]Other definitions
- Proper Transfer Function: $n \geq m$ (i.e. $G(s) = Constant\vert_{t->\infty}$)
Time Response of System
Typical Signal
- Step
- Ramp
- Parabolic
Response of First-Order System
- step: $c(t) = 1 - e^{-\frac{t}{T}}$
Second-Order System
- $\omega_n$: natural frequency
- $\xi$: damping ratio
- $0 < \xi < 1$: Underdamped
- $\omega_d = \omega_n \sqrt{1-\xi^2}$: Damped natural frequency
- $\xi = 1$: critically damped
- $\xi > 1$: overdamped
Transient Response Definitions
- Rise time: $t_r = \frac{\pi - \phi}{\omega_d}$
- Peak time: $t_p = \frac{\pi}{\omega_d}$
Stability of System
$f(t)$ is bounded if there is an M s.t. $\lvert f(t) \rvert < M < \infty$
Definition: A system is Bounded-Input Bounded-Ouput(BIBO) stable if whenever the input signal is bounded, so is the output signal.
BIBO System: All poles are in the left-half s-panel.
Routh Table
\[a_0s^n + a_1s^{n-1} + ... + a_n = 0\]$s^n$ | $a_0$ | $a_2$ | $a_4$ | $a_6$ |
---|---|---|---|---|
$s^{n-1}$ | $a_1$ | $a_3$ | $a_5$ | $a_7$ |
$s^{n-2}$ | $b_0$ | $b_1$ | $b_2$ | $b_3$ |
… | … | … | … | … |
Frequency Response
\[\frac{|Y(j\omega)|}{|U(j\omega)|} = |G(j\omega)|\] \[\phi = \angle G(j\omega)\]Chapter 1 – Introduction
Problem with classical control
Transfer function has its limitations. It can not describe the internel behavior of a system, which is more complicated than external behavior.
Mathematical Description
Class of systems
- SISO: Single Input and Single Output system
- MIMO: Multi Input and Multi Output system
Causality
- Memoryless: output $y_{t_0}$ depends only on the input applied at time $t_0$
- Most systems have memory: output $y_{t_0}$ depends on $u(t)$ for $t < t_0, t = t_0, t > t_0$
- Causal/Non-anticipatory system: current output depends on past and current input
States and associated definitions
- State Variables: the smallest set of variables determine the state of the system
- State Vector: n state variables -> n dimensions vector $x(t)$
- State Space: space of state vector
- State Trajectory: the path produced by the state vector in the state space with the changes of time
Lumpedness
Lumped system: finite state variables or finite state vector
Linear System
Superposition
- additivity: 可加性
- homogeneity: 齐次性
State Space Representation
\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) + D(t)u(t)\]When $A(t),B(t),C(t),D(t)$ are constants, the equations describe an LTI system:
\[\dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t)\]Words in RLC circuit: Inductor: 电感 Resistor: 电阻
Chapter 2 – Review of Linear Algebra
Words in Linear Algebra
- Basis: 基
- orthogonal: 正交
- \[\alpha^T * \beta = 0\]
- orthonormal: 单位正交
- Domain: 定义域
- Range: 值域
- Rank: 秩
- \[R(A) = r\]
- Full Rank: 满秩
- \[R(A_{n \times n}) = n\]
- Non-Singular: 非奇异
- Determinant: 行列式
- \[det(A) = |A|\]
- Minor: 余子式
- \[M_{ij}\]
- Co-Minor: 代数余子式
- \[C_{ij} = (-1)^{i+j} * M_{ij}\]
- Adjugate matrix: 伴随矩阵
- \[A^*\]
- Transpose: 转置
- \[A^T\]
- Inverse: 逆
- \[A^{-1}\]
- Eigenvalues: 特征值
- \[det(\lambda I - A) = 0\]
- Eigenvector: 特征向量
- \[Ax = \lambda x\]
- Similarity Transformation: 相似变换(相似矩阵)
- \[\bar{A} = Q^{-1}AQ\]
- Diagonal: 对角阵
- \[\Lambda\]
- Caley-Hamilton Theorem
- \[del(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0 \\ \implies A^n + a_1 A^{n-1} + \dots + a_n I = 0\]
Chapter 3 – State Space
Introduction
\[\dot{x} = Ax + Bu \\ y = Cx + Du\]Solution of $\dot{x} = Ax$
\[x(t) = e^{A(t-t_0)}x(t_0)\]Properties of $e^{At}$
- \[\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A\]
- \[e^{At} = \mathcal {L}^{-1}[(sI - A)^{-1}]\]
- \[e^{At_1}e^{At_2} = e^{A(t_1+t_2)}\]
- \[e^{At}e^{-At} = I\]
- \[[e^{At}]^T = e^{A^Tt}\]
- \[e^{At}e^{Bt} = e^{(A+B)t} \space \text{if and only if} \space AB = BA\]
Methods of Computing $e^{At}$
- \[e^{At} = \sum_{k = 0}^{\infty} \frac{A^kt^k}{k!}\]
- \[e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]\]
- \[e^{At} = Qe^{\Lambda t}Q^{-1}\]
Full Solution
\[y(t) = Ce^{A(t-t_0)}x(t_0) + C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)\]Non-uniqueness of representation and Invariance of Eigenvalues
\[x = Q\bar{x} \\ \implies \bar{A} = Q^{-1}AQ, \bar{B} = Q^{-1}B, \bar{C} = CQ, \bar{D} = D\]After the transformation, eigenvalues don’t change.
State Space to Transfer Function
\[G(s) = C(sI - A)^{-1}B + D\]Chapter 4 – Controllability and Observability
Controllability
$\text{Consider}$
\[U = [B \space AB \space \dots \space A^{n-1}B]\]$\text{System is controllable if and only if}$
\[R(U) = n\]Observability
$\text{Consider}$
\[O = \left ( \begin{matrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{matrix} \right )\]$\text{System is observable if and only if}$
\[R(O) = n\]Output Controllability
$\text{Consider}$
\[P = [CB \space CAB \space \dots \space CA^{n-1}B]\]$\text{System is observable if and only if}$
\[R(P) = m\]Chapter 5 – Stability
BIBO Stability
\[|u(t)| \leq k_1 < \infty, \forall t \ge 0, |y(t)| \leq k_2 < \infty\]A SISO system is stable, if and only if:
\[\int_0^\infty |g(t)|dt \leq k < \infty\]The T.F. of a SISO system is $G(s)$. It’s stable, if and only if all the poles of $G(s)$ are in the open left-half s-plane.
Internal Stability
$x_e$ is equilibrium point, if:
\[Ax_e = 0\]A system is internal stable, if and only if:
\[x_e = 0 (origin)\]Lyapunov Stability
$\text{Lyapunov Function}$
\[V(x)\]$\text{System is asymptotically stable, if}$
\[\frac{dV(x)}{dt} < 0, \forall x \neq 0\]Usually $V(x) = x^T P x, P > 0$
Lyapunov Equation
\[A^TP + PA = -Q\]The system is stable, if and only if:
\[\forall Q > 0, \exists P > 0\]Usually let $Q = I$, then solve the equation. The system is stable, if P > 0.
Chapter 6 – Canonical Forms
\[G(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}\]Controllable Canonical Form
If the system is controllable, it can be transformed into a controllable canonical form:
\[A = \left[ \begin{matrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{matrix} \right], B = \left[ \begin{matrix} 0 \\ 0 \\ \vdots \\ 1 \end{matrix} \right]\] \[C = \left[ \begin{matrix} b_0 & b_1 & \dots & b_{n-1} \end{matrix} \right]\]Let the transformation be $\bar{x} = Tx$.
\[T = \left[ \begin{matrix} q^T \\ q^TA \\ \vdots \\ q^TA^{n-1} \end{matrix} \right]\] \[q^T \space \text{is the last row of} \space U^{-1}\]Observable Canonical Form
If the system is observable, it can be transformed into a controllable canonical form:
\[A = \left[ \begin{matrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \dots & 1 & -a_{n-1} \end{matrix} \right], B = \left[ \begin{matrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{matrix} \right]\] \[C = \left[ \begin{matrix} 0 & 0 & \dots & 1 \end{matrix} \right]\]Let the transformation be $x = Q\bar{x}$.
\[Q = \left[ \begin{matrix} \omega & A\omega & \dots & A^{n-1}\omega \end{matrix} \right]\] \[\omega \space \text{is the last column of} \space O^{-1}\]Realization
It is easy to find a S.S. representation with given $G(s)$.
Chapter 7 – State Feedback and Observer
State Feedback
\[u = kx + r \\ k \space \text{is known as feedback gain} \\ k = [k_n \space k_{n-1} \dots k_1]\]close-loop eigenvalues:
\[det(sI - (A + Bk)) = 0\]With desired characteristic equation:
\[s^n + \hat{\alpha}_1s^{n-1} + \dots + \hat{\alpha}_n = 0\]Solve $k$ with:
\[det(sI - (A + Bk)) = s^n + \hat{\alpha}_1s^{n-1} + \dots + \hat{\alpha}_n\]Steps of the solution (desired eigenvalues: $\hat{\lambda}_i$):
- Find \(det(sI - A) = s^n + \alpha_1s^{n-1} + \dots + \alpha_n\)
- Compute $T$ that transforms $(A,B)$ to CCF
- Compute \(\Pi_{i=1}^n(s - \hat{\lambda}_i) = s^n + \hat{\alpha}_1s^{n-1} + \dots + \hat{\alpha}_n\)
- Compute \(\bar{k} = [(\alpha_n - \hat{\alpha}_n), (\alpha_{n-1} - \hat{\alpha}_{n-1}), \dots, (\alpha_1 - \hat{\alpha}_1)]\)
- \[k = \bar{k}T\]
Luenberger Linear Observer
\[\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \\ e = x - \hat{x} \\ \dot{e} = (A - LC)e\]Same as State Feedback, find the solution:
\[det(sI - (A - LC)) = \Pi_{i=0}^n(s-\hat{\lambda}_i)\]Steps of the solution (desired eigenvalues: $\hat{\lambda}_i$):
- Find \(det(sI - A) = s^n + \alpha_1s^{n-1} + \dots + \alpha_n\)
- Compute $Q$ that transforms $(A,B)$ to OCF
- Compute \(\Pi_{i=1}^n(s - \hat{\lambda}_i) = s^n + \hat{\alpha}_1s^{n-1} + \dots + \hat{\alpha}_n\)
- Compute \(\bar{L} = [(\hat{\alpha}_n - \alpha_n), (\hat{\alpha}_{n-1} - \alpha_{n-1}), \dots, (\hat{\alpha}_1 - \alpha_1)]^T\)
- \[L = Q\bar{L}\]
Combination of State Feedback and Observer
\[\left( \begin{matrix} \dot{x} \\ \dot{e} \end{matrix} \right) = \left( \begin{matrix} A+BK & -BK \\ 0 & A-LC \end{matrix} \right) \left( \begin{matrix} x \\ e \end{matrix} \right) + \left( \begin{matrix} B \\ 0 \end{matrix} \right) r\] \[y = \left( \begin{matrix} C & 0 \end{matrix} \right) \left( \begin{matrix} x \\ e \end{matrix} \right)\]Computer Control I
Shannon’s Sampling Theorem
\[\omega_s > 2 \omega_c\] \[\text{Nyquist frequency} \space \omega_N = \frac{\omega_s}{2}\]Zero-Order Hold
\[\hat{u}(t) = u(t_k), t_k \leq t < t_{k+1}\]Second-Order Filter
\[G(s) = \frac{\omega^2}{s^2 + 2\zeta \omega s + \omega^2}\]Computer Control II
Discrete-Time State Space
\[x(k+1) = \Phi x(k) + \Gamma u(k) \\ y(k) = C x(k) + D u(k)\]$\text{Where}$
\[\Phi = e^{Ah}, \Gamma = \int_0^h e^{At}dtB \\ h: \text{sampling period}\]Computation of $\Phi$ and $\Gamma$
Same as the Continuous-Time State Space One Simplification:
\[\Psi = \int_0^h e^{At}dt \\ \varPhi = I + A \Psi, \Gamma = \Psi B\]The Inverse of Sampling
\[A = \frac{\ln(\Phi)}{h} = \ln(\Phi^{\frac{1}{k}}) \\ B = \Psi^{-1} \Gamma = (A \Psi)^{-1}A\Gamma = (\Phi - I)^{-1} A \Gamma\]Z Transform
\[F(z) = \sum_{k=0}^\infty f(kh)z^{-k} \\ f(kh) = \frac{1}{2\pi i}\int F(z)z^{k-1}dz\]Direct Conversion
\[H(z) = \frac{Y(z)}{U(z)} = C(zI-\Phi)^{-1} \Gamma\]Hold-Equivalent D.T.T.F
\[H(z) = (1-z^{-1})\mathcal{Z}[\frac{G(s)}{s}]\]Poles and Zeros
\[z_i = e^{s_ih}\]Computer Control III
Stability
Table Method
\[a_i^{k-1} = a_i^k - \alpha_k a_{k-i}^k \\ \alpha_k = \frac{a_k^k}{a_0^k}\]Lyapunov Second Method
\[\Phi^TP\Phi - P = -Q\]Controllability of Discrete system
\[U_d = [\Gamma \space \Phi \Gamma \space \dots \space \Phi^{n-1}\Gamma]\]Observability of Discrete system
\[O_d = \left( \begin{matrix} C \\ C \Phi \\ \vdots \\ C \Phi^{n-1} \end{matrix} \right)\]Canonical Forms
Same as Continuous system.
版权声明: 如无特别声明,本文版权归 Longbin's Tech-Blog 所有,转载请注明本文链接。
(采用 CC BY-NC-SA 4.0 许可协议进行授权)
本文标题:《 EES4710/ME4300 Modern Control System 》
本文链接:https://longbin.tech//course%20note/ME4300-Modern-Control-System.html
本文最后一次更新为 天前,文章中的某些内容可能已过时!
目录
- Chapter 0 – Review of Basic Control System
- Chapter 1 – Introduction
- Chapter 2 – Review of Linear Algebra
- Chapter 3 – State Space
- Chapter 4 – Controllability and Observability
- Chapter 5 – Stability
- Chapter 6 – Canonical Forms
- Chapter 7 – State Feedback and Observer
- Computer Control I
- Computer Control II
- Computer Control III